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1. For ALL APPLICANTS.

For each part of the question on pages 3—7 you will be given four possible answers,
just one of which is correct. Indicate for each part A—J which answer (a), (b), (c),
or (d) you think is correct with a tick (�) in the corresponding column in the table
below. Please show any rough working in the space provided between the parts.
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A. The values of k for which the line y = kx intersects the parabola y = (x− 1)2 are
precisely

(a) k � 0, (b) k � −4, (c) k � 0 or k � −4, (d) − 4 � k � 0.

B. The sum of the first 2n terms of

1, 1, 2,
1

2
, 4,
1

4
, 8,
1

8
, 16,

1

16
, . . .

is

(a) 2n + 1− 21−n, (b) 2n + 2−n, (c) 22n − 23−2n, (d)
2n − 2−n

3
.
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C. In the range 0 � x < 2π, the equation

sin2 x+ 3 sinx cosx+ 2 cos2 x = 0

has

(a) 1 solution, (b) 2 solutions, (c) 3 solutions, (d) 4 solutions.

D. The graph of y = sin2
√
x is drawn in

x

y

x

y

(a) (b)

x

y

x

y

(c) (d)
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E. Which is the largest of the following four numbers?

(a) log2 3, (b) log4 8, (c) log3 2, (d) log5 10.

F. The graph y = f (x) of a function is drawn below for 0 � x � 1.

1

1�4

1�2

1�3 1�2 3�4 1
x

y

The trapezium rule is then used to estimate
∫
1

0

f (x) dx

by dividing 0 � x � 1 into n equal intervals. The estimate calculated will equal the
actual integral when

(a) n is a multiple of 4;
(b) n is a multiple of 6;
(c) n is a multiple of 8;
(d)n is a multiple of 12.
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G. The function f, defined for whole positive numbers, satisfies f (1) = 1 and also the
rules

f (2n) = 2f (n) ,

f (2n+ 1) = 4f (n) ,

for all values of n. How many numbers n satisfy f (n) = 16?

(a) 3, (b) 4, (c) 5, (d) 6.

H. Given a positive integer n and a real number k, consider the following equation in x,

(x− 1) (x− 2) (x− 3)× · · · × (x− n) = k.

Which of the following statements about this equation is true?

(a) If n = 3, then the equation has no real solution x for some values of k.
(b) If n is even, then the equation has a real solution x for any given value of k.
(c) If k � 0 then the equation has (at least) one real solution x.
(d)The equation never has a repeated solution x for any given values of k and n.
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I. For a positive number a, let

I (a) =

∫ a

0

(
4− 2x2

)
dx.

Then dI/da = 0 when a equals

(a)
1 +

√
5

2
, (b)

√
2, (c)

√
5− 1
2

, (d) 1.

J. Let a, b, c be positive numbers. There are finitely many positive whole numbers x, y
which satisfy the inequality

ax > c by

if

(a) a > 1 or b < 1.
(b) a < 1 or b < 1.
(c) a < 1 and b < 1.
(d) a < 1 and b > 1.
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7



2. For ALL APPLICANTS.

Suppose that a, b, c are integers such that

a
√
2 + b = c

√
3.

(i) By squaring both sides of the equation, show that a = b = c = 0.

[You may assume that
√
2,
√
3 and

√
2/3 are all irrational numbers. An irrational

number is one which cannot be written in the form p/q where p and q are integers.]

(ii) Suppose now that m,n,M,N are integers such that the distance from the point
(m,n) to

(√
2,
√
3
)
equals the distance from (M,N) to

(√
2,
√
3
)
.

Show that m =M and n = N .

Given real numbers a, b and a positive number r, let N (a, b, r) be the number of
integer pairs x, y such that the distance between the points (x, y) and (a, b) is less than
or equal to r. For example, we see that N (1.2, 0, 1.5) = 7 in the diagram below.

-1 1 2 3
x

-2

-1

1

2

y

(iii) Explain why N (0.5, 0.5, r) is a multiple of 4 for any value of r.

(iv) Let k be any positive integer. Explain why there is a positive number r such that

N
(√
2,
√
3, r
)
= k.
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3.

ForAPPLICANTS IN






MATHEMATICS

MATHEMATICS & STATISTICS

MATHEMATICS & PHILOSOPHY

MATHEMATICS & COMPUTER SCIENCE





ONLY.

Computer Science applicants should turn to page 14.

[In this question, you may assume that the derivative of sinx is cosx.]

x
O A

B

C

(i) In the diagram above OA and OC are of length 1 and subtend an angle x at O. The
angle BAO is a right angle and the circular arc from A to C, centred at O, is also drawn.

By consideration of various areas in the above diagram, show, for 0 < x < π/2, that

x cos x < sin x < x.

(ii) Sketch, on the axes provided on the opposite page, the graph of

y =
sin x

x
, 0 < x < 4π.

Justify your value that y takes as x becomes small.

[You do not need to determine the coordinates of the turning points.]

(iii) Drawn below is a graph of y = sinx. Sketch on the same axes the line y = cx where
c > 0 is such that the equation sinx = cx has exactly 5 solutions.

-3Π -2Π -Π Π 2Π 3Π
x

-1.0

-0.5

0.5

1.0

y

(iv) Draw the line y = c on the axes on the opposite page.

(v) If X is the largest of the five solutions of the equation sin x = cx, explain why
tanX = X.
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x

y

π 2π 3π 4π

1

−1
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4.

For APPLICANTS IN






MATHEMATICS

MATHEMATICS & STATISTICS

MATHEMATICS & PHILOSOPHY





ONLY.

Mathematics & Computer Science and Computer Science applicants should turn to

page 14.

Θ

H1,2hL

-2 -1 1 2 3
x

-2

-1

1

2

3

y

Diagram when h > 2/
√
5

Θ

H1,2hL

-2 -1 1 2 3
x

-2

-1

1

2

3

y

Diagram when h <
√
3/2

The three corners of a triangle T are (0, 0), (3, 0), (1, 2h) where h > 0. The circle C has
equation x2 + y2 = 4. The angle of the triangle at the origin is denoted as θ. The circle
and triangle are drawn in the diagrams above for different values of h.

(i) Express tan θ in terms of h.

(ii) Show that the point (1, 2h) lies inside C when h <
√
3/2.

(iii) Find the equation of the line connecting (3, 0) and (1, 2h) . Show that this line is
tangential to the circle C when h = 2/

√
5.

(iv) Suppose now that h > 2/
√
5. Find the area of the region inside both C and T in

terms of θ.

(v) Now let h = 6/7. Show that the point (8/5, 6/5) lies on both the line (from part
(iii)) and the circle C.

Hence show that the area of the region inside both C and T equals

27

35
+ 2α

where α is an angle whose tangent, tanα, you should determine.

[You may use the fact that the area of a triangle with corners (0, 0), (a, b), (c, d) equals
1

2
|ad− bc| .]
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5. For ALL APPLICANTS.

This question concerns calendar dates of the form

d1d2/m1m2/y1y2y3y4

in the order day/month/year.

The question specifically concerns those dates which contain no repetitions of a digit.
For example, the date 23/05/1967 is one such date but 07/12/1974 is not such a date
as both 1 = m1 = y1 and 7 = d2 = y3 are repeated digits.

We will use the Gregorian Calendar throughout (this is the calendar system that is
standard throughout most of the world; see below.)

(i) Show that there is no date with no repetition of digits in the years from 2000 to 2099.

(ii) What was the last date before today with no repetition of digits? Explain your
answer.

(iii) When will the next such date be? Explain your answer.

(iv) How many such dates were there in years from 1900 to 1999? Explain your answer.

[The Gregorian Calendar uses 12 months, which have, respectively, 31, 28 or 29, 31, 30,
31, 30, 31, 31, 30, 31, 30 and 31 days. The second month (February) has 28 days in
years that are not divisible by 4, or that are divisible by 100 but not 400 (such as 1900);
it has 29 days in the other years (leap years).]
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6.

ForAPPLICANTS IN

{
COMPUTER SCIENCE

MATHEMATICS & COMPUTER SCIENCE

}
ONLY.

In the questions below, the people involved make statements about each other. Each
person is either a saint (S) who always tells the truth or a liar (L) who always lies.

(i) Six people, P1, P2, . . . , P6 sit in order around a circular table with P1 sitting to P6’s
right, as shown in the diagram below.

P1

P2P3

P4

P5 P6

(a) Suppose all six people say "the person directly opposite me is telling the truth".
One possibility is that all six are lying. But, in total, how many different possibilities
are there? Explain your reasoning.

(b) Suppose now that all six people say "the person to my left is lying". In how
many different ways can this happen? Explain your reasoining.

(ii) Now n people Q1, Q2, . . . , Qn sit in order around a circular table with Q1 sitting to
Qn’s right.

(a) Suppose that all n people make the statement "the person on my left is lying and
the person on my right is telling the truth". Explain why everyone is lying.

(b) Suppose now that every person makes the statement "either the people to my
left and right are both lying or both are telling the truth". If at least one person is
lying, show that n is a multiple of three.
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7. For APPLICANTS IN COMPUTER SCIENCE ONLY.

In a game of Cat and Mouse, a cat starts at position 0, a mouse starts at position m
and the mouse’s hole is at position h. Here m and h are integers with 0 < m < h. By
way of example, a starting position is shown below where m = 7 and h = 12.

Cat Mouse Hole

With each turn of the game, one of the mouse or cat (but not both) advances one position
towards the hole on the condition that the cat is always strictly behind the mouse and
never catches it. The game ends when the mouse reaches the safety of its hole at position
h.

This question is about calculating the number, g (h,m), of different sequences of moves
that make a game of Cat and Mouse.

Let C denote a move of the cat andM denote a move of the mouse. Then, for example,
g (3, 1) = 2 as MM and MCM are the only possible games. Also CMCCM is not a
valid game when h = 4 and m = 2 as the mouse would be caught on the fourth turn.

(i) Write down the five valid games when h = 4 and m = 2.

(ii) Explain why g (h, h− 1) = h− 1 for h � 2.

(iii) Explain why g (h, 2) = g (h, 1) for h � 3.

(iv) By considering the possible first moves of a game, explain why

g (h,m) = g (h,m+ 1) + g (h− 1,m− 1) when 1 < m < h− 1.
(v) Below is a table with certain values of g (h,m) filled in. Complete the remainder of
the table and verify that g (6, 1) = 42.

1

2

3

4

5

2 3 4 5 6 h

1

2

3

4

5

m
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End of Last Question
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